62 research outputs found

    The neural bases of vitality forms

    Get PDF
    Unlike emotions, which are short-lasting events accompanied by viscero-motor responses, vitality forms are continuous internal states that modulate the motor behaviors of individuals and are devoid of the autonomic modifications that characterize real emotions. Despite the importance of vitality forms in social life, only recently have neurophysiological studies been devoted to this issue. The first part of this review describes fMRI experiments, showing that the dorso-central insula is activated during the execution, the perception and the imagination of arm actions endowed with different vitality forms as well as during the hearing and the production of speech conveying vitality forms. In the second part, we address the means by which the dorso-central insula modulates the networks for controlling action execution and how the sensory and interoceptive information is conveyed to this insular sector. Finally, we present behavioral data showing the importance of vitality forms in social interactions

    Histological assessment of a chronically implanted cylindrically-shaped, polymer-based neural probe in the monkey

    Get PDF
    Objective. Previous studies demonstrated the possibility to fabricate stereo-electroencephalography probes with high channel count and great design freedom, which incorporate macro-electrodes as well as micro-electrodes offering potential benefits for the pre-surgical evaluation of drug resistant epileptic patients. These new polyimide probes allowed to record local field potentials, multi- and single-unit activity (SUA) in the macaque monkey as early as 1 h after implantation, and yielded stable SUA for up to 26 d after implantation. The findings opened new perspectives for investigating mechanisms underlying focal epilepsy and its treatment, but before moving to possible human application, safety data are needed. In the present study we evaluate the tissue response of this new neural interface by assessing post-mortem the reaction of brain tissue along and around the probe implantation site. Approach. Three probes were implanted, independently, in the brain of one monkey (Macaca mulatta) at different times. We used specific immunostaining methods for visualizing neuronal cells and astrocytes, for measuring the extent of damage caused by the probe and for relating it with the implantation time. Main results. The size of the region where neurons cannot be detected did not exceed the size of the probe, indicating that a complete loss of neuronal cells is only present where the probe was physically positioned in the brain. Furthermore, around the probe shank, we observed a slightly reduced number of neurons within a radius of 50 µm and a modest increase in the number of astrocytes within 100 µm. Significance. In the light of previous electrophysiological findings, the present data suggest the potential usefulness and safety of this probe for human applications

    The cognitive neuroscience of prehension: recent developments

    Get PDF
    Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions

    Predictions not commands: active inference in the motor system

    Full text link

    Single neurons in the insular cortex of a macaque monkey respond to skin brushing: Preliminary data of the possible representation of pleasant touch

    No full text
    Pleasant touch may serve as a foundation for affiliative behavior, providing a mechanism for the formation and maintenance of social bonds among conspecifics. In humans, this touch is usually referred to as the caress. Dynamic caressing performed on the hairy skin with a velocity of 1-10 cm/s is perceived as being pleasant and determines positive cardio-physiological effects. Furthermore, imaging human studies show that affiliative touch activates the posterior insular cortex (pIC). Recently, it was demonstrated that pleasant touch in monkeys (i.e., sweeping in a grooming-like manner) is performed with velocities similar to those characteristics of human caress (9.31 cm/s), and causes similarly positive autonomic effects, if performed with velocity of 5 cm/s and 10 cm/s, but not lower or higher. Due to similarities between the human caress and non-human primate sweeping, we investigated for the first time whether single neurons of the perisylvian regions (secondary somatosensory cortex [SII] and pIC) of a rhesus monkey can process sweeping touch differently depending on the stimulus speed. We applied stimulation with two speeds: one that optimally induces positive cardio-physiological effects in the monkey who receives it, and includes the real speed of sweep (5-15 cm/s, sweep fast), and a non-optimal speed (1-5 cm/s, sweep slow). The results show that single neurons of insular cortex differently encode the stimulus speed. In particular, even the majority of recorded somatosensory neurons (82.96%) did not discriminate the two speeds, a small set of neurons (16.59%) were modulated just during the sweep fast. These findings represent the first evidence that single neurons of the non-human primates insular cortex can code affiliative touch, highlighting the similarity between human and non-human primates' social touch systems. This study constitutes an important starting point to carry out deeper investigation on neuronal processing of pleasant sweeping in the central nervous system

    Pathways for smiling, disgust and fear recognition in blindsight patients

    No full text
    The aim of the present review is to discuss the localization of circuits that allow recognition of emotional facial expressions in blindsight patients. Because recognition of facial expressions is function of different centers, and their localization is not always clear, we decided to discuss here three emotional facial expression - smiling, disgust, and fear - whose anatomical localization in the pregenual sector of the anterior cingulate cortex (pACC), anterior insula (AI), and amygdala, respectively, is well established. We examined, then, the possible pathways that may convey affective visual information to these centers following lesions of V1. We concluded that the pathway leading to pACC, AI, and amygdala involves the deep layers of the superior colliculus, the medial pulvinar, and the superior temporal sulcus region. We suggest that this visual pathway provides an image of the observed affective faces, which, although deteriorated, is sufficient to determine some overt behavior, but not to provide conscious experience of the presented stimuli
    • …
    corecore